IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.1,

JANUARY 2016 197

High-Performance and Dynamically Updatable
Packet Classification Engine on FPGA

Yun R. Qu, Member, IEEE and Viktor K. Prasanna, Fellow, IEEE

Abstract—High-performance and dynamically updatable hardware architectures for multi-field packet classification have regained
much interest in the research community. For example, software defined networking requires 15 fields of the packets to be checked
against a predefined rule set. Many algorithmic solutions for packet classification have been studied over the past decade.
FPGA-based packet classification engines can achieve very high throughput; however, supporting dynamic updates is yet challenging.
In this paper, we present a two-dimensional pipelined architecture for packet classification on FPGA,; this architecture achieves high
throughput while supporting dynamic updates. In this architecture, modular Processing Elements (PEs) are arranged in a
two-dimensional array. Each PE accesses its designated memory locally, and supports prefix match and exact match efficiently. The
entire array is both horizontally and vertically pipelined. We exploit striding, clustering, dual-port memory, and power gating techniques
to further improve the performance of our architecture. The total memory is proportional to the rule set size. Our architecture sustains
high clock rate even if we scale up (1) the length of each packet header, or/and (2) the number of rules in the rule set. The performance
of the entire architecture does not depend on rule set features such as the number of unique values in each field. The PEs are also
self-reconfigurable; they support dynamic updates of the rule set during run-time with very little throughput degradation. Experimental
results show that, for a 1 K 15-tuple rule set, a state-of-the-art FPGA can sustain a throughput of 650 Million Packets Per Second
(MPPS) with 1 million updates/second. Compared to TCAM, our architecture demonstrates at least four-fold energy efficiency while

achieving two-fold throughput.

Index Terms—Packet classification, field-programmable gate array (FPGA), two-dimensional pipeline, dynamic updates

1 INTRODUCTION

SOFTWARE Defined Networking (SDN) has been proposed
as a novel architecture for enterprise networks. SDN
separates the software-based control plane from the hard-
ware-based data plane; as a flexible protocol, OpenFlow [1],
[3] can be used to manage network traffic between the con-
trol plane and the data plane. One of the kernel function
Open-Flow performs is the flow table lookup [1]. The flow
table lookup requires multiple fields of the incoming packet
to be examined against entries in a prioritized flow table.
This is similar to the classic multi-field packet classification
mechanism [4]; hence we use interchangeably the flow
table lookup and the OpenFlow packet classification in
this paper.

The major challenges of packet classification include: (1)
supporting large rule sets, (2) sustaining high performance
[2], and (3) facilitating dynamic updates [5]. Many existing
solutions for multi-field packet classification employ
Ternary Content Addressable Memories (TCAMs) [6], [7].
TCAMs cannot support efficient dynamic updates; for
example, a rule to be inserted can move across the entire
rule set [8]. This is an expensive operation. TCAMs are not
scalable with respect to the rule set size. Besides, they are
also very power-hungry [2], [9], [10].

o The authors are with the Ming Hsieh Department of Electrical
Engineering, University of Southern California, Los Angeles, CA 90089.
E-mail: {yunqu, prasannaj@usc.edu.

Manuscript received 17 Aug. 2014; revised 18 Nov. 2014, accepted 2 Jan.
2014. Date of publication 7 Jan. 2015; date of current version 16 Dec. 2015.
Recommended for acceptance by A. Gordon-Ross.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2015.2389239

Field Programmable Gate Array (FPGA) technology has
been widely used to implement algorithmic solutions for
real-time applications [11], [12]. FPGA-based packet classifi-
cation engine can achieve very high throughput for rule sets
of moderate size [13]. However, as the number of packet
header fields or the rule set size increases (e.g., OpenFlow
packet classification [1]), FPGA-based approaches often
suffer from clock rate degradation.

Future Internet applications require the hardware to per-
form frequent incremental updates and adaptive processing
[14], [15], [16]. Because it is prohibitively expensive to recon-
struct an optimal architecture repeatedly for timely updates,
many sophisticated solutions have been proposed for packet
classification supporting dynamic updates over the years [5].
Due to the rapid growth of the network size and the band-
width requirement of the Internet [17], it remains challenging
to design a flexible and run-time reconfigurable hardware-
based engine without compromising any performance.

In this paper we present a scalable architecture for packet
classification on FPGA. The architecture consists of multiple
self-reconfigurable Processing Elements (PEs); it sustains
high performance for packet classification on a large num-
ber of packet header fields. This architecture also supports
efficient dynamic updates of the rule set. The rule set
features, the size of the rule set, and the packet header
length all have little effect on the performance of the archi-
tecture. Our contributions in this work include:

e Scalable architecture. A two-dimensional pipelined
architecture on FPGA, which sustains high through-
put even if the length and the depth of the packet
classification rule set are scaled up.

1045-9219 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.1,

JANUARY 2016

TABLE 1
An Example of OpenFlow Packet Classification Rule Set (5 Rules, 15 Fields) [1], [2]
RID Priority Ingr Metadata Eth src Eth dst Eth type VLAN_ID VLAN priority MPLS label MPLS tfc SA DA Prtl ToS SP DP
Field Length 32 64 48 48 16 12 3 20 3 32 32 8 6 16 16
Field Typet E E E E E E E E E P P E E E E
Ry 2 5 00:13:A9: 00:13:08: 0x0800 * 0 * 001* * TCP 0 o
00:42:40 C6:54:06
Ry 1 * * 08:00:69: 00:FF:FF: * 100 7 16,000 0 00* 1011* UDP * o
02:FC:07 FF:FF:FF
R, 3 * * * 00:00:00: 0x8100 4,095 7 * * ™ 1011 ¢ * 2 5
00:00:00
R3 4 1 * 00:FF:FF: * * 4,095 * * * 1* 1* * 0 7 5
FF.FF.FF
Ry 0 4 * FF:FF:FF: * * 2,041 * * * 110 01* * 0 80 123
FF.FF.FF

t: “E” as exact match, and “P” as prefix match.

e Novel optimization techniques. A couple of optimiza-
tion techniques exploiting tradeoffs between various
design parameters and performance metrics, includ-
ing rule set size, throughput, update rate, resource
consumption, and power efficiency.

o Distributed update algorithms. A set of algorithms sup-
porting dynamic updates, including modify, delete
and insert operations on the rule set. The algorithms
are performed distributively on self-reconfigurable
PEs. The update operations have little impact on the
sustained throughput.

e Superior throughput. Detailed performance evaluation
of our proposed architecture on a state-of-the-art
FPGA. We show in post-place-and-route results that
our architecture sustains a throughput of 650 MPPS
with 1 million updates/second (M updates/s) for a
1 K 15-tuple rule set.

o Energy efficiency. Thorough comparison of our archi-
tecture with existing solutions for packet classifica-
tion with respect to energy efficiency. Compared to
TCAM, our architecture sustains 2x throughput
and supports fast dynamic updates with 4x energy
efficiency.

The rest of the paper is organized as follows: Section 2
introduces the classic multi-field packet classification prob-
lem and its OpenFlow variant. We revisit existing packet
classification techniques in Section 3. We detail the design
of the two-dimensional pipelined architecture in Section 4.
Optimization techniques are proposed in Section 5. We
present the update algorithms on this architecture in
Section 6. Section 7 provides the experimental results and
summarizes the advantages of the proposed architecture.
Section 8 concludes the paper.

2 BACKGROUND

2.1 Classic Packet Classification

An individual predefined entry used for classifying a packet
is denoted as a rule; a rule is associated with a unique rule
ID (RID) and a priority. The data set consisting of all the
rules is called rule set. Packet classification can be defined
as: Given a packet header having d fields and a rule set of size N,
out of all the rules matching the packet header, report the RID of
the rule whose priority is the highest.

A packet header is considered to be matching a rule only if
it matches all the fields of that rule. The classic packet classifi-
cation [4] involves five fields in the packet header: the
Source/Destination IP Addresses (SA/DA), Source/Destina-
tion Port numbers (SP/DP), and the transport layer protocol
(Prtl). Note different fields in a rule can require different types
of match criteria; thus, a rule can consist of prefixes, exact val-
ues, or/and ranges. In this paper, we consider prefix match in
the SA and DA fields, and exact match in all the other fields.

2.2 OpenFlow Packet Classification
OpenFlow packet classification requires a larger number of
packet header fields to be examined. For example, in the cur-
rent specification of OpenFlow protocol [1], a total number of
15 fields consisting of 356 bits in the packet header have to be
compared against all the rules in the rule set. Out of the 15
fields, only the SA and DA fields require prefix match, while
all the other fields require exact match. We show an example
rule set in Table 1. A “*” in a particular field of a rule indicates
the corresponding rule can match any value in that field.

As shown in Table 2, compared to the classic packet clas-
sification, it is more challenging to achieve high perfor-
mance for OpenFlow packet classification:

1) Large-scale. OpenFlow requires a large number of bits
and packet header fields to be processed for each
packet (large d and large L).

2) Dynamic updates. OpenFlow places high emphasis on
dynamic updates (large U), including rule modifica-
tion, deletion, and insertion.

3 PRIOR WORK

3.1 Packet Classification Techniques
Packet classification has been extensively studied over the
past decade [4]. Most of the packet classification algorithms

TABLE 2
Classic versus OpenFlow Packet Classification
Type Classic OpenFlow
No. of fields (d) 5 15
Pkt. header length (L) 104 bits [13] 356 bits [1]
Update rate (U) Relatively static <10 K updates/s [8]

QU AND PRASANNA: HIGH-PERFORMANCE AND DYNAMICALLY UPDATABLE PACKET CLASSIFICATION ENGINE ON FPGA 199

used in hardware or software fall into two major categories:
decision-tree-based [10], [18] and decomposition-based [5],
[19] algorithms.

Decision-tree-based approaches involve cutting the
search space recursively into smaller subspaces based on
the information from one or more fields in the rule. In [10],
a decision tree is mapped onto a pipelined architecture on
FPGA; for a rule set containing 10 K rules, a throughput
of 80 Gbps is achieved for packets of minimum size
(40 bytes). However, the performance of decision-tree-based
approaches is rule-set-dependent. A cut in one field can
lead to duplicated rules in other fields (rule set expansion
[18]). As a result, a decision-tree can use up to O(N' 4) mem-
ory; this approach can be impractical.

Decomposition-based approaches [19], [20] first search
each packet header field individually. The partial results are
then merged to produce the final result. To merge the par-
tial results from all the fields, hash-based merging techni-
ques [20] can be explored; however, these approaches either
require expensive external memory accesses, or rely on a
second hardware module to solve hash collisions.

As a decomposition-based approach, Bit Vector (BV)
approach [21] is a specific technique in which the lookup on
each field returns an N-bit vector. Each bit in the bit vector
corresponds to a rule. A bit is set to one only if the input
matches the corresponding rule in this field. A bit-wise logi-
cal AND operation can be exploited to gather the matches
from all the fields.

For decomposition-based approaches, the complexity of
searching a specific field is usually dependent on some rule
set features, such as the number of unique rules in a field
[19], [20]. In this paper, we propose an approach whose per-
formance does not depend on such rule set features.

3.2 BV-Based Approaches

The Field-Split BV (FSBV) approach [21] and its variants [13]
split each field into multiple subfields of s-bits; a rule is
mapped onto each subfield as a ternary string defined on
{0,1,+}*. Lookup operations can be performed in all the
subfields in a pipelined fashion; the partial result in each
PE' is represented by a BV of N bits. Logical AND opera-
tions can be used to merge all the extracted BVs to generate
the final match result on FPGA. We show the basic architec-
ture [13], [21] of BV-based approaches in Fig. 1, FSBV
approach can be visualized as a special case of s =1. To
access an N-bit data, wires of length O(N) are often used
for the memory; as N increases, the clock rate of the entire
pipeline deteriorates.

3.3 Dynamic Updates

Dynamic updates for packet classification has been a well-
defined problem [5]; we are not aware of any solution sup-
porting high performance. In [5], two algorithms are pro-
posed based on tree/trie structures to support dynamic
updates; they require O(log?N) and O(log’"'N) update
time, respectively, for a d-field rule set consisting of NV rules.
They are too expensive for OpenFlow packet classification
(d = 15). For the same reason, most of the decision-tree-

1. We use PE to denote a pipeline stage that produces a BV.

Packet ™ = g -
header ?g ?g S 2
c p 22 2 e S <
L o qE, e qE, N £ ®
& o i 2 =
-9
Packet - >
header ‘ "
g g N
g N Eo+'>
S M4 N |o
AND x
BV —
N ||

Fig. 1. Basic architecture of BV-based approaches.

based approaches cannot easily support fast dynamic
updates. Some of the decision-tree-based approaches [10]
require the trees to be recomputed and remapped onto
FPGA whenever the rule set needs to be updated; this is
very expensive.

Some of the decomposition-based approaches [20]
explore external memory on FPGA; for each update, a num-
ber of external memory write accesses must be performed.
This is also very expensive. In this paper, we construct self-
reconfigurable PEs, and we propose an efficient update
scheme using these PEs.

4 SCALABLE ARCHITECTURE

4.1 Notations

For a packet header of L bits, we split all the fields into sub-
fields of s bits?, hence there are in total [£] subfields,
indexed by j=0,1,...,[£] — 1. Let k; denote the input
packet header bits in subfield j; therefore the length of k; is

also s bits. A bit vector B;kj ' is defined as the vector specify-
ing the matching conditions between the input packet
header bits and the corresponding bit locations of all the
rules. We show an example in Fig. 2, where BVs are the col-
umn vectors indexed by k; in subfield j.

For a rule set consisting of N rules, the length of each BV
is N bits. We denote the data structure that stores all the
BVs in a given subfield as bit vector array, as shown in Fig. 2.
In this figure, each 2-bit stride is associated with an
N x 2°=3 x4 BV array. An N x 2° BV array requires a
memory size of 2° x N.

After we have constructed all the bit vectors in all the
subfields, we use the input header bits k;’s to address the

corresponding BVs in the BV arrays. For a subfield j, B;kj ' is
extracted for the input bits k;. For example, in Fig. 2, if the
input packet header has ky = 10 in the subfield j =0, we
extract the BV By o = 010; this indicates only the rule R,
matches the input in this subfield.

4.2 Challenges and Motivations
As shown in Fig. 1, in the pipelined architecture for BV-
based approaches on FPGA, each PE extracts a BV in a

2. This is different from FSBV, where only two fields are split.

200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27,

BV arrays (s = 2)

j=1 j=0

4-bitfield | k; 00 01 10 11|00 01 10 11
R, | o011 Ro! 1|ofofofof[o]o]1
Ry | o01%* 5 Riiol1]olof1[a1]1]1
R, 110* R, olo|ofl1}1|1]l0]o0

k.
N X 25 BV array bit vector BI(. 2

Fig. 2. Splitting a 4-bit field into two subfields.

subfield; to produce the final match result, BVs are ANDed
with each other in a pipelined fashion. Excluding the prior-
ity encoder (if any), we have [£] PEs in this pipeline. We
denote such an architecture as basic pipelined architecture. In
the basic pipelined architecture, the BVs in each PE for N
rules are N-bit long. For distributed RAM (distRAM) or
Block RAM (BRAM) modules of fixed size®, the number of
memory modules required for each PE grows linearly with
respect to N. This means the length of the longest wire con-
necting different memory modules in a PE also increases at
O(N) rate, which degrades the throughput of the pipeline
for large N.

To address this problem, we propose a two-dimensional
pipelined architecture consisting of multiple modular PEs
in this work. Our work is inspired by the observation that a
long BV can be further partitioned into smaller subvectors to
eliminate the long wires and improve the overall clock rate
of the classification engine.

4.3 Modular PE

A modular PE is used to match a single packet header
against one rule (N = 1) in a 1-bit subfield (s = 1). In order
to minimize the number of I/O pins utilized, a modular PE
is also responsible for propagating input packet headers to
other PEs. A modular PE should be able to handle both pre-
fix match and exact match.

Let us consider the internal organization of a modular PE
as shown in Fig. 3. The main difference between the modu-
lar PE in Fig. 3, and the PEs used in the basic pipelined
architecture, is that the modular PE in Fig. 3 only produces
the match result for exactly one rule at a time (2 x 1-bit data
memory). The modular PE in this work has other
components:

1) Rule decoder. The logic-based rule decoder is mainly
responsible for dynamic updates (See Section 6).

2) s-bit register for input packet header. It is used in the
construction of vertical pipelines (See Section 4.4).
Note there are two types of registers: We denote the
register buffering the input packet header bits as the
input register; we denote the register after the AND
gate as the output register.

We denote a rule requiring prefix match as a prefix rule.
Similar to FSBV, for a 1-bit subfield, the prefix rule can be han-
dled efficiently. In Fig. 3, the packet header bit is used to
address the memory directly; the extracted BV is then ANDed
with the BV output from the previous PE in the pipeline.

3. e.g., 26 x 1-bit distRAM based on six-input Look Up Table (LUT)
and 36 Kb SRAM-based BRAM [22].

NO.1, JANUARY 2016
packet header bit
z s
o
£ & 8
c g = o
— [=] S
S o 2
a1 & 3
8 (o]
7'}
S
g
o Rule decoder
rst
Reg.

Fig. 3. Modular PE.

A rule requiring exact match can be treated as a special
case of a prefix rule. Hence we do not introduce any other
new components for exact match.

4.4 Two-Dimensional Pipeline

To handle a larger number of rules and more input
packet header bits, we use multiple modular PEs to con-
struct a complete two-dimensional pipelined architecture
as shown in Fig. 4. We use PE[l, j| to denote the modular
PE located in the Ith row and jth column, where
1=0,1,2,3 and j=0,1,2. We use distRAM for the data
memory in each PE, so that the overall architecture can
be easily fit on FPGA and the memory access in each PE
is localized.

4.4.1 Horizontal

We define horizontal direction as the forward (right) or
backward (left) direction along which the BVs are propa-
gated. We use output registers of modular PEs to construct
horizontal pipelines (e.g., PE[0,0], PE[0,1], PE[0,2]). The
data propagated in the horizontal pipelines mainly consist
of BVs.

packet header

T

@

PE PE . PE I |
ol v oy TV 2 = e
\ 4 A4 0 -
PE . PE — PE

[1,0] \:> [1,1] - [1,2] :>: PrEnc :

@

A
PE PE PE
2ol Y 21 7 (22
b
PE PE . PE
[3,0] = [3,1] = a2l

@

| 2

m

=

(g}
final result

Fig. 4. Example: A two-dimensional pipelined architecture (N =4,
L = 3) and priority encoders (PrEnc).

QU AND PRASANNA: HIGH-PERFORMANCE AND DYNAMICALLY UPDATABLE PACKET CLASSIFICATION ENGINE ON FPGA 201

s{s packet header bits =l
|¢0?|-D QP enlout
: (3
enlin P n e
1 n-bit "l B
’ A —rP o —P bvl
bvlin = - AND) & bvlout
)
£ n —
ol
g |¢0?|->&J—>en20ut
en2in 9| © n —
a p] n-bit ol M
bv2in :, AND —Ap ko —P> bv2out
n
2l |n b
2 2 Rule decoder
4 reset

Fig. 5. A modular PE with striding, clustering, and power gating techni-
ques; data memory is dual-ported.

4.4.2 \Vertical

We define vertical direction as the upward (up) or down-
ward (down) direction along which the input packet header
bits are propagated. We use input registers of modular PEs
to construct vertical pipelines (e.g., PE[0, 0], PE[1, 0], PE[2, 0],
PE[3,0]). The data propagated in the vertical pipelines of
PEs consist of packet header bits.

Note we do not restrict the rules to be arranged in the
rule set following any specific order, we need a priority
encoder [13] at the end of each horizontal pipeline to report
the highest-priority match. In our approach, the match
results of all the horizontal pipelines are collected by a verti-
cal pipeline of priority encoders.

Since each modular PE can perform prefix/exact match
for one rule in a 1-bit subfield, the architecture in Fig. 4 con-
sisting of four rows and three columns of modular PEs can
handle four rules, each rule having three 1-bit subfields.
Using more modular PEs, this architecture can be scaled up
for a larger number of rules, and for longer packet headers.
For a rule set consisting of N rules, and an L-bit packet
header, the two-dimensional pipelined architecture requires
N rows and L columns of PEs to be concatenated in a pipe-
lined fashion.

5 OPTIMIZATION TECHNIQUES

5.1 Striding

The striding technique [13] can be applied to the modular
PE, as shown in Fig. 5. Suppose the modular PE only needs
to perform packet header match against one rule. Based on
the discussion in Section 4.1, the amount of memory
required for prefix match in an s-bit subfield is 2° x 1. The
length of the input register is s bits because we have s input
packet header bits when using striding technique.

5.2 Clustering

Besides the striding technique, we also introduce a clustering
technique for the modular PE. The basic idea is to build a PE
which can handle multiple rules instead of a single rule. Let

1 port of data memory deactivated

g 8 O 8 @l 8 \4@ g
PE N PE L\ PE PE

o = nn = na = pa =
o g & 8 o8 U 8

Fig. 6. Power gating.

us consider the modular PE performing packet header
match against n rules as shown in Fig. 5. We construct a BV
array consisting of 2° bit vectors, each of length n; this
requires a data memory of size 2° x n. The 1-bit AND gate
in Fig. 3 is adjusted to an n-bit logical AND gate in Fig. 5.

5.3 Dual-Port Data Memory

We employ dual-port (read) data memory on FPGA. Two
concurrent packets can be processed in each modular PE.
We denote the input BVs for the two concurrently processed
packets as bulin and bv2in, respectively; we denote the out-
put BVs for the two concurrent packets as bvlout and
bv2out, respectively. The throughput is twice the maximum
clock rate achieved on FPGA. Assuming the same clock rate
can be sustained, this technique doubles the throughput
achieved by the modular PE shown in Fig. 3.

We show a modular PE with dual-port data memory
techniques in Fig. 5. For each of the two concurrent packets,
the modular PE compares an s-bit subfield of the packet
header against a set of n rules. The overall two-dimensional
pipelined architecture has [¥] rows by [£] columns of PEs;
each row of PEs (i.e., a horizontal pipeline) is responsible
for matching packet headers against n rules, while each col-
umn (i.e., a vertical pipeline) is in charge of matching an
s-bit subfield.

5.4 Power Gating

For any incoming packet header, if PE[l, j] (j < £ — 1) identi-
fies that this packet header does not match any of the n
rules, then there is no need to examine the remaining sub-
fields for this packet. This is because the logical AND opera-
tions in PE[, j + 1], PE[l,j + 2],..., and PE[l,£ — 1] can only
produce all-“0” vectors anyway; the outputs from the data
memory modules become irrelevant for these PEs. By deac-
tivating the corresponding port of the data memory in
PE[l,j+1], PE[l,j+2],..., and PE[l,£—1], a significant
amount of power can be saved on the average (see
Section 7.7). We show the modular PE with power gating
technique in Fig. 5. The comparator after each AND gate
generates an enable signal; this enable signal is high only if
the corresponding output BV is not an all-“0” vector. The
enable signal (high/low) is output to the next PE in order to
activate/deactivate the corresponding port of the data
memory in the next PE.

For example in Fig. 6, suppose bvlout and bv2out are
“000” and “100” after PE[1, 1], respectively. For any modular
PE after PE[1,1] (namely PE[1,2] or PEJ1,3]), the logical
AND gates can only produce all-“0” vectors as their bvlout
signals. In this case, the data memory ports corresponding
to bvlout in both PE[1,2] and PE[1, 3] are deactivated. Note

202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.1,

in this example, the data memory ports corresponding to
bv2out are never deactivated.

6 DyNAMIC UPDATES

6.1 Problem Definition

OpenFlow packet classification requires the hardware to
adapt to frequent incremental updates for the rule set during
run-time. In this section, we propose a dynamic update
scheme which supports fast incremental updates of the rule
set without sacrificing the pipeline performance. Before we
detail our update mechanism, we define the following terms:

Old rule. The rule to be modified in the rule set
New rule. The rule to appear in the rule set after an
update

e Outdated (data structure). (Data structure, e.g. BV, BV
array, and valid bit) to be updated

o Up-to-date (data structure). (Data structure) that is

already updated
Given a rule set ® consisting of N rules {R;li =0,
1,..., N—1}, we reiterate the problem definition of

dynamic updates as three subproblems:

e Modify. Given a rule with RID R, and all of its field
values and priority, search RID R in @, locate i €
{0, 1, ..., N — 1} where R; = R; change rule R, in ®
into rule R (e.g., change the SA field of R, in Table 1
from “00*” into “0*”).

e Delete. Given a rule with RID R, search RID R in &,
locate i € {0,1,..., N—1} where R; = R; delete
rule R; from ® (e.g., remove R, completely from
Table 1).

e Insert. Given a rule with RID R, and all of its field
values and priority, search RID R in ®; if Vi€
{0, 1, ..., N =1}, R; # R, then insert rule R into ®
(e.g., add a brand new rule as R; into Table 1).

We assume all modular PEs are implemented with strid-
ing and clustering techniques; each of the PEs stores an
n x 2° BV array.

Notice that the first step of all update operations is
always a RID check, which reports whether the RID of the
new rule exists in the current rule set. RID check only
requires exact match for a log N-bit field; the rule decoders
in the first column of PEs are in charge of this process, since
the results of the RID check need to be reported before any
update operation.

After RID check is completed, to target the above three
subproblems, we present our main ideas as follows:

e (Section 6.2) We update all the corresponding BVs in
the BV arrays, or we update priority encoders (for
priority).

e (Section 6.3) We keep a “valid” bit for each rule; we
reset the bit to invalidate a rule.

o (Section 6.4) We check the valid bits of all the rules
first; if a rule in the rule set is invalid, we modify
this invalid rule into the new rule, and validate this
new rule.

Section 6.5 covers the architectural support for the

update mechanism. The resulting overall architecture
consists of multiple self-reconfigurable PEs, each PE

JANUARY 2016

configuring its memory contents in a distributed manner.
Section 6.6 summarizes the update schedule.

6.2 Modification

After the RID check, suppose RID R already exists in the
rule set; hence 3i € {0, 1,..., N — 1} such that R; = R. Rule
modification can be performed as: Given a rule with RID R,
along with all of its field values and priority, compute the
up-to-date BVs, and replace the outdated BVs in the BV
arrays with the up-to-date BVs. In any subfield, we assume
a rule is represented by a ternary string {0, 1, *}’. In reality,
a rule is represented by two binary strings, the first string
specifying the non-wildcard ternary digits while the second
string specifying the wildcards.*

6.2.1 Modifying Prefix Rule

Let us consider how to update the BV arrays. The first step
for rule modification is to construct the up-to-date BVs for
this subfield. Specifically, we use Algorithm 1 to construct all
2° up-to-date bit vectors (of length n) for this s-bit subfield.
The correctness of Algorithm 1 can be easily proved [21].
Note Algorithm 1 is a distributed algorithm; if the modifica-
tion of rule R; requires multiple BV arrays to be updated,
Algorithm 1 is performed in parallel by the PEs in the same
horizontal pipeline where R; can be located. In each PE,
the logic-based rule decoder performs Algorithm 1 to update
the memory content by itself (self-reconfiguration).

Algorithm 1. Up-to-Date BVs in Subfield j
Input n ternary strings each of s bits: 7; ;, where
T, €{0,1,%}%,i=0,1,...
Output 2° BVs each of n bits:
B;kj) — bﬁ?bﬁ-ﬁj) . b;i’l),l, where bﬁij) € {0,1},
kj=0,1,...,2° =1,andi=0,1,...,n — 1.
1: fori=0,1,...,n—1do

,n—1.

2: fork;=0,1,...,2°—1do
3: if k; matches T} ; then

4 b 1

5: else

6: bgk]’) —0

7: end if

8: end for

9: end for

As shown in Fig. 2, the BVs are arranged in an orthogo-
nal direction to the rules in the data memory. To modify a
single rule, 2° memory write accesses are required in the
worst case.” As can be seen later, even in the worst case, no
more than 2° bits are modified in our approach.

We show an example for rule modification in Fig. 7. In
this example, we modify the subfield j = 0 of the rule R, in
Fig. 2. In this subfield, based on Algorithm 1, R; is to be
updated from “0*” to “1*”. A naive solution is to update the

4. e.g., a tenary string “01*” is represented by “010” and “001”.

5. This happens when the outdated BV is different from the up-to-
date BV in every single bit location. Also, we assume each time there is
only one rule to be updated; updating multiple rules at the same time
is not supported by the rule decoder.

QU AND PRASANNA: HIGH-PERFORMANCE AND DYNAMICALLY UPDATABLE PACKET CLASSIFICATION ENGINE ON FPGA 203

ki 00 01 10 11 ki 00 01 10 11
Rp|O|o0|0]|1 Rp|O0|o0|0]1
Ry|1|1|1]1 Ry|1|1|1]1
R,|1]1|0]o0 R, | 0|0 |1]1

Fig. 7. Modifying R».

entire BV array. However, since we exploit distRAM for
data memory, each bit of a BV is stored in one distRAM
entry; this means every bit corresponding to a rule can be
modified independently. Hence in Fig. 7, to update the sub-
field j = 0 of Ry, only 4 bits have to be modified (in four
memory accesses). To avoid data conflicts, memory write
accesses are configured as single-ported. Hence in any sub-
field, we always allocate 2° clock cycles for 2° memory write
accesses (worst case) for simplicity.

6.2.2 Modifying Priority

If the update process requires the priority of the old rule to
be changed, i.e., the new rule and the old rule have different
priorities, we update the priority encoders based on a
dynamic tree structure [23]. The time complexity to update
the dynamic tree is O(log N). In general, if a prioritized rule
set requires prefix match to be performed, the parallel time
complexity for modifying a rule is O(max[2°,log N]).

6.3 Deletion

After the RID check, suppose RID R already exists in the
rule set; hence 3i € {0, 1,..., N — 1} such that R, = R. Rule
deletion can be performed as: Given a RID R, delete the rule
with RID R; from the rule set. i.e., R; should no longer pro-
duce any matching result.

To handle rule deletion, let us first consider all the n rules
handled by a particular horizontal pipeline consisting of [£]
PEs. We propose to use n valid bits to keep track of all the n
rules. A valid bit is a binary digit indicating the validity of a
specific rule. A rule is valid only if its corresponding valid
bit is set to “1”.

For a rule to be deleted, we reset its corresponding valid
bit to “0”. An invalid rule is not available for producing any
match result. We show an example for rule deletion in
Fig. 8. In this example, initially R, and R, are valid; R, is
invalid. R, is to be deleted from the rule set. During the
deletion, the valid bit corresponding to R, is reset to “0”.
The n valid bits are directly ANDed with the bit vector of
length n propagated through the horizontal pipeline. As a
result, if a rule is invalid, the corresponding position for this

k; 00 01 10 11 k; 00 01 10 11
Ry|1|(0]|0]|0O Ry|1|[0]|0]O
RyjO|1]0]0O Ri|O|1|0]|O
R, |0 |0 |O0]1 R, |0 |0 |01
Valid bit Valid bit
Ry 1 ' Ry 1
Ry 1 invalidate Ry 0
R; 0 R, 0

Fig. 8. Deleting an old rule R;.

kl' 00 01 10 11 kl' 00 01 10 11
Ry|1|0|0]o0 Ry|1|0|0]oO
Riy|O|1|0]|O Ry|O|1|0]|O
R[]0 [O0]|O0]1 Ry|1 |1 |1]1
Valid bit Valid bit
Ry 1 ' Ry 1
Ry 1 validate Ry 1
R; 0 R, 1

Fig. 9. Inserting a new rule R as R;.

rule in the final AND result can only be “0”, indicating the
input does no match this rule.

6.4 Insertion

After the RID check, suppose RID R does not exist in the
rule set; hence Vi €0, 1,..., N —1, R; # R. Rule insertion
can be performed as: Given a rule with RID R, along with
all of its field values and priority, add the new rule with
RID R into the rule set. i.e., check the valid bits, modify one
of the invalid rules and validate this new rule.

To insert a rule, (1) we first check whether there is any
invalid rule in the rule set; we denote this process as validity
check. (2) Then we reuse the location of any invalid rule to
insert the new rule: we modify one of the invalid rules into
the new rule by following the same algorithm presented in
Section 6.2. (3) Finally, we validate this new rule by updat-
ing its corresponding valid bit.

Fig. 9 shows an example of rule insertion in a subfield. In
this figure, initially rule R, is invalid as indicated by the
valid bit. During insertion, the location in the BV array cor-
responding to Ry is reused by the new rule R. We validate
the new rule R by setting its valid bit to “1”.

6.5 Architecture for Dynamic Updates

The main idea of self-reconfiguration is to give each PE the
ability to reconfigure its memory contents by itself during
an update. In this case, the BV arrays do not have to be fed
into the data memory explicitly; instead, only the rules are
provided to each PE. As a result, the dynamic updates are
performed in a fine-grained distributed manner in parallel;
no centralized controller is required, and the amount of
data I/O operations is minimized.

6.5.1 Storing Valid Bits

The data memory of the modular PE in Fig. 5 can also be
used to store the valid bits. We use an extra column of PEs,
each storing n valid bits for each horizontal pipeline. We
place this column of PE as the first vertical pipeline on the
left of the two-dimensional pipelined architecture. This is
because: for each horizontal pipeline, a validity check
is required for rule deletion/insertion; if the validity check
is performed in the middle or at the end of the horizontal
pipeline, all the packet headers being processed in the pipe-
line after the validity check may still use obsolete data val-
ues and produce incorrect computation results (data
hazard). In that case, either stalling or flushing the pipeline
is necessary, which affects the sustained throughput of the

204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.1,

pipeline. Storing valid bits in the first PE of each horizontal
pipeline reduces the number of bubbles injected into
the pipeline and minimizes the negative effect of validity
check on the throughput performance.

Valid bits are extracted during run-time and output to
the next PE in the horizontal pipeline. The resulting overall
architecture has [Y] rows and ([£] +1) columns, where
valid bits are stored and extracted in PE[,0], | =0,
1,..., [¥] — 1 (the first column).

6.5.2 Logic-Based Rule Decoder

To save I/O pins on FPGA, we use the pins for packet
header (L pins) to input a new rule (in two cycles for ternary
strings). In each PE[(,0], [=0, 1,..., [¥] — 1, the RID of the
rule that needs an update is provided to the rule decoders.
A rule decoder is in charge of:

1) RID check (for all types of update operations, only in
the PEs of the first column). The rule decoders check
whether the RID of the new rule already exists in the
rule set. This is implemented using log(/V)-bit
comparators.

2) Rule translation (for modification/insertion, in all the
PEs except the first column). Based on the new rule,
all the data to be written (2° bits) to the data memory
are generated by the rule decoder. The logic is simple
(e.g., enumerations) since s is usually small (see
Section 7.3). Rule translation requires 3 clock cycles
in each PE since the new rule has to be provided in 2
cycles.

3) Validity check (for insertion, only in the PEs of the
first column). The rule decoder reports the position
of the first invalid bit in the data memory. The logic
for this process is also simple.

4) Construction of valid bits (for insertion, only in the PEs
of the first column). Similar to rule translation, the
rule decoder provides the up-to-date valid bits to the
data memory.

Besides the four major functions mentioned above, the
rule decoder is also a distributed controller for each PE. The
rule decoder in a particular modular PE can also insert pipe-
line bubbles by resetting the output register (using the sig-
nal reset in Fig. 5).

6.6 Update Schedule and Overhead

To further improve the performance of our architecture, let
us investigate the update overheads in each PE for different
types of update operations in Table 3.

1) For all update operations, the RID of the new rule
has to be checked against all the rules, which results
in one-cycle overhead.

2) The rule decoder generates control signals based on
the new rule provided on the s packet header input
pins/wires; hence the rule translation cannot be
overlapped with the packet header matching pro-
cess. This leads to a three-cycle overhead.

3) We overlap the validity check process with the
on-going packet header matching process; the
validity check results are reported every clock

JANUARY 2016

TABLE 3

Update Overhead (Clock Cycles)
Update types Modify Delete Insert
RID check 1 1 1
Rule translation 3 - 3
Validity check Overlapped with packet matching
Updating BV array 23 - 25
Updating priority log N log N log N
Updating valid bits - 1 1
Worst-case 4+ 1+ 4+
total overhead max[2°, log N] log N max[2°, log N]

cycle to the rule decoder for all the PE[/, 0], [=0,
Lo, M -1

4) To update the BV array, the rule decoder initiates 2°
memory write accesses. During memory write
accesses, the memory cannot be read by the packet
header matching process.

5) The priority encoders require log N cycles to modify
the priority of a rule. However, the process of updat-
ing the priority can be overlapped with the process
of updating the data memory.

6) The update process for the valid bits (one memory
write per PE in the first column) cannot be over-
lapped with the on-going packet header matching
process; however, it can be overlapped with the
update process of the BV arrays (2° cycles) for rule
modification/insertion.

In the worst case, a single rule modification requires
all the BV arrays stored in a horizontal pipeline to be
updated. We show an example of the update schedule
(4 x 3 PEs, excluding priority encoders) in Fig. 10. In this
example, we assume the RID of the new rule exists in
the last horizontal pipeline; this can be identified by the
RID check. Therefore only the PEs in the last row require
the contents in the data memories to be overwritten.
As can be seen, although ([£] + [X]) clock cycles are
required to propagate the new rule across the entire PE
array, this amount of time does not contribute to the total
update overhead. This is because the update is per-
formed in a distributed and pipelined manner. Assuming
2° > log N, the matching process in a particular PE has to
be stalled for a total number of (2° +4) cycles for a rule
modification/insertion. In Fig. 10, for instance, the
matching process is stalled for (2° 4+ 4) = 6 clock cycles in
each PE.

Note all other PEs except the first column neither per-
form RID check nor update valid bits. Also, Table 3 lists the
worst-case total overhead for any PE. As can be seen, the
rule insertion introduces the most overhead among all types
of update operations.

7 PERFORMANCE EVALUATION

7.1 Experimental Setup

We conducted experiments using Xilinx ISE Design Suite
14.5, targeting the Virtex 6 XC6VLX760 FFG1760-2 FPGA
[22]. This device has 118,560 logic slices, 1200 I/O pins,
26 Mb BRAM (720 RAMB36 blocks), and can be config-
ured to realize large amounts of distRAM (up to 8 Mb). A

QU AND PRASANNA: HIGH-PERFORMANCE AND DYNAMICALLY UPDATABLE PACKET CLASSIFICATION ENGINE ON FPGA 205

1st cycle 4th cycle
:?>D v
(v v v EEEIY v | RID check
? |
. Fr::slation
: Updati
oDoo mopm B
<5!3D o b
BB B I[x] [] suee
B~ [v][x][#]

+ 3)-th cycle :

e

&=
+

3=z

M =4,s=n=1).

n

Fig. 10. Example: inserting a new rule ([£] + 1 = 3,

—

Configurable Logic Block (CLB) on this FPGA consists of
two slices, each slice having four LUTs and eight flip-
flops. Clock rate and resource consumption are reported
using post-place-and-route results.

Note in our approach, the construction of BVs does not
explore any rule set features®, the performance of our archi-
tecture is rule-set-independent. We use randomly generated
bit vectors; we also generate random packet headers for
both the classic (d =5, L =104) and OpenFlow (d = 15,
L = 356) packet classification in order to prototype our
design, although our architecture neither restricts the num-
ber of packet header fields (d) nor requires a specific length
of the packet header (L). The number of rules in a rule set is
chosen to be from 128 to 1K, since most of the real-life rule
sets are fairly small [8], [13]. The rest of this section is orga-
nized as follows:

e (Section 7.2) We introduce the design paramters and
performance metrics.

e (Section 7.3) We optimize our design for given N and
L while varying n and s.

e (Section 7.4) We scale our architecture with respect
to N and L, based on the values of n and s which
give the best performance in Section 7.3.

e (Section 7.5) We demonstrate our architecture sup-
ports fast dynamic updates with high sustained
throughput.

e (Section 7.6) We show the latency introduced by our
architecture and compare it with state-of-the-art
packet classification engines.

e (Section 7.7) We report resource consumption and
show the energy efficiency of our architecture under
various scenarios.

e (Section 7.8) We compare the throughput, latency,
and energy efficiency of our design with state-of-the-
art packet classification engines.

6. e.g., the number of unique values in each field /subfield, the aver-
age length of prefixes, etc.

TABLE 4
Clock Rate (MHz) of Various Designs

5
1 2 3 4 5 6 7

4 22548 20442 339.79 346.14 364.56 379.65 339.79
8 210.08 25497 352.86 389.86 364.30 380.47 257.47
n 16 25740 27996 373.00 370.10 373.00 363.77 289.10
32 259.40 239.69 342.35 344.83 355.11 315.26 262.67
64 201.01 244.26 315.76 317.56 336.36 299.67 260.28

7.2 Design Parameters/Performance Metrics
We vary several design parameters to optimize our
architecture:

Size of the rule set (N). The total number of rules
Length of the BV (n). The number of bits in the BV
produced by a single PE

e Packet header length (L). The total number of bits for
the input packet header

e Stride (s). The number of bits for a subfield

e Update rate (U). The total number of all the update
operations (modification, deletion or insertion) for
the rule set per unit time

We study the performance trade-offs with respect to the

following metrics:

o Peak throughput (T,cq). The maximum number of
packets that can be processed per second without
any update operation

o Sustained throughput (Tg,sqin). The number of packets
processed per second considering all update
operations

e Latency (T'). The processing latency of a single packet
when no dynamic update is performed

e Resource consumption. The total amount of hardware
resources (logic slices, I/O, etc.) consumed by the
architecture on FPGA

o Energy efficiency (n). The total energy spent to classify
an incoming packet [24]

7.3 Empirical Optimization of Parameters
To find the optimal values of n and s by experiments, we
first fix the values of N =128, and L = 356 for OpenFlow
packet classification. The values of n and s achieving the
best performance are used later for other values of N and L.
We show the maximum clock rate achieved by various
designs in Table 4. We choose s from 1 to 7 and n from 4 to
64, since for s > 7 or n > 64, the clock rate drops to below
200MHz. As can be seen, we achieve very high clock rate
(200 ~ 400 MHz) with small variations among various
designs. All the memory modules are configured to be
dual-ported, hence we achieve 400 ~ 800 MPPS throughput
for OpenFlow packet classification. We can observe that:

1) For s <2, BV arrays are stored in 2°-input “shallow”
memories. This memory organization underutilizes
the six-input LUT-based distRAM modules on
FPGA. Also, since we have a large number of PEs for
5 <2, the entire architecture consumes large
amounts of registers; the complex routing between

206 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.1,

1000
Bn=N Bn=8

2T 5 4
S 600 E = = =
ol -l -/
£ 400 ég ?‘E é =
2 200 - %E /E / /E
= A V2 U=
7= V= V= V=
128 256 512 1024

Number of rules

Fig. 11. Scalability with respect to vV and n.

these registers also limits the maximum achievable
clock rate.

2) For 3 < s <6, the best performance is achieved for
n = & or n = 16. There is fast interconnect in a slice,
then slightly slower interconnect between slices in a
CLB, followed by the interconnect between CLBs. A
PE with n = 8 uses exactly eight flip-flops of a slice
to register a BV, while a PE with n = 16 uses exactly
all 16 flip-flops in a CLB to register a BV. These two
configurations introduce the least routing overhead.

3) For s> 6, BV arrays are stored in 2°-input “deep”
memories. This organization requires multiple LUTs
of different CLBs to be used for a single PE; the long
wiring delay between CLBs results in clock rate
deterioration.

4) The performance for s = 4 and n = 8 is the best. This
is because all the LUTs inside a single slice can be
used as 128-bit dual-ported distRAM; the configura-
tion of n = 8 and s = 4 not only uses up all the eight
flip-flops in a slice, but also provides a memory
organization to store bit vectors of total size 2° x n =
128 bits.

In summary, for N =128 and L = 356, the best perfor-
mance is achieved when s =4 and n = 8. Hence we use
s =4 and n = 8 to implement our architecture for other val-
ues of N and L’

7.4 Scalability of Throughput
Using s =4 and n =8, we vary N and L, respectively, to
show the scalability of the throughput performance.

Fig. 11 shows the throughput of our architecture with
respect to various values of N (L = 356). As can be seen,
our architecture achieves very high clock rate (324 MHz)
and throughput (648 MPPS) even for N = 1,024 (largest to
the best of our knowledge). We also show in the same figure
the necessity of using modular PEs along with the clustering
technique. Compared to the basic pipelined architecture
(n = N), our architecture achieves better throughput (up to
2x) when the rule set is large; in our architecture, the clock
rate tapers much slower as N increases.

7. The choice of s and n is not unique; e.g., latency can be used as a
metric to choose s and n. However, in our experiments, we choose s
and n such that they give the highest clock rate, since our goal is to
achieve high throughput. Other choices are also possible but they all
achieve similar performance.

JANUARY 2016

1
000 BL=356

800

600

400

Throughput (MPPS)

200

AN
RN

IS

i/
128

/i
256

4

1024

0

512
Number of rules

Fig. 12. Scalability with respectto N and L.

Fig. 12 shows the throughput for both the classic packet
classification (L = 104) and OpenFlow packet classification
(L = 356). Our architecture achieves very high throughput
for the classic packet classification. The OpenFlow packet
classification consumes more resources and requires more
complex routing; hence the performance degrades com-
pared to the classic packet classification.

7.5 Updates and Sustained Throughput

As discussed in Section 6.6, the rule insertion stalls the
packet header match process for the most number of clock
cycles; for the worst-case analysis, we assume pessimisti-
cally that all the update operations are rule insertions. Based
on Table 3, the sustained throughput can be calculated
using the following equation:

f—=2-U-(4+ max[2° log N])

, @
f

Teustmﬁn =

Tpea,k :

where f denotes the maximum clock rate achieved for a
specific design. The factor of 2 comes from the fact that
memory write accesses are single-ported.

We vary the value of U and show the sustained through-
put of our architecture in Fig. 13, considering the worst-case
scenario for all update operations. In this implementation,
s =4 and n = 8 are used for N = 1,024. As can be seen, our
architecture sustains a high throughput of 650 MPPS with
1M updates/s, although 1M updates/s is pessimistic con-
sidering real-world traffic.®

7.6 Scalability of Latency

We show the latency performance with respect to vari-
ous values of N and L’ in Fig. 14. In the same figure, we
also break down the latency introduced by the two-
dimensional pipelined architecture and the tree-based
priority-encoders. As can be seen, more than 86 percent
of the latency is introduced by the two-dimensional
pipeline: ([£] +[X]) cycles. The latency introduced by
the priority encoders can be neglected; hence
I' ~ ([£] + [X]). This means, for a specific configuration
on s and n, and fixed values of L (or N), I' is sublinear
with respect to N (or L).

8. Typical update rates are < 10 K updates/s [8].
9. Similar performance can be seen for other values of N, L.

QU AND PRASANNA: HIGH-PERFORMANCE AND DYNAMICALLY UPDATABLE PACKET CLASSIFICATION ENGINE ON FPGA

1000
R @peak HBsustained
£ 800
s
S 600 = V= =
g = 7= U=
S U= U= U=
: = A =
2w == U=

, =2 U= U=

1K 10K 100K M

Update rate (updates/s)
Fig. 13. Sustained throughput.

1000
Hpri_enc @2d_pipe

800

600

400 -

Latency (ns)

128 256 512
Number of rules

Fig. 14. Latency: for each N, the four columns correspond to
L =89, 178, 267, 356 from left to right.

TABLE 5
Resource Consumption (s = 4, n = 8 and L = 356)

No. of rules N 128 256 512 1,024
No. of logic slices 14,773 29,056 57,209 112,812
(% of total) (12%) (25%) (48%) (95%)
No. of I/O pins 722 723 724 725
(% of total) (60%) (60%) (60%) (60%)
No. of registers 48,704 97,502 195,164 329,690
(% of total) (5%) (10%) (20%) (34%)

7.7 Resource and Energy Efficiency

We report the resource consumption for OpenFlow packet
classification in Table 5. The resources consumed by the
architecture increases sublinearly with respect to V.

We measure the energy efficiency with respect to
the energy consumed for the classification of each packet
(J/packet); a small value of this metric is desirable. In
Fig. 15, we show the energy efficiency without the power
gating technique (w/o opt.) and with the power gating tech-
nique (w/ opt.) as discussed in Section 5, respectively.
Three scenarios for input packet headers are tested with 1K
OpenFlow rule set, including;:

1) All-match. Every input packet header produces an
“all-one” BV in any PE. This means every input
packet header matches all the rules, which is too
pessimistic.

2) Random. Packet headers are generated randomly.

Energy/packet (nJ)

20

All-match
Ow/o opt. L=89
Ew/o opt. L=178
w/o opt. L=267
Bw/o opt. L=356

Random No-match

Bw/ opt. L=89

Bw/opt. L=178
w/ opt. L=267
Ew/ opt. L=356

207

Fig. 15. Energy efficiency (s = 4, n = 8, N = 1,024).

400 800
_ @Energy BThroughput -
- [E
£ 300 600 E
2 =
g 200 400 2
& g
>} o)
2 100 200 £
L
= a-}
=) Z

0 0

Fig. 16. Comparing throughput and energy efficiency.

3) No-match. Every input packet header is identified as
not matching any of the 1K rules in the first column
of PEs. In this case, since the memory modules in all
the other columns of PEs are deactivated, the energy
efficiency of our design with power gating technique
is optimistic.

For each scenario, we vary the number of horizontal
pipeline stages to investigate the energy efficiency. The
power gating technique is more effective for larger two-
dimensional pipelined architectures'?; this is because more
data memory ports can be turned off if an early stage (close
to the first column of PEs) reports no match. As can be seen
in Fig. 15, with the power gating technique, our design can
save up to 67 percent energy; the actual energy saved
depends on the pattern of the input packet headers.

7.8 Comparison with State-of-the-art
7.8.1 Throughput and Energy Efficiency

Fig. 16 shows a comparison of our approach with existing
hardware accelerators. We consider 15-field OpenFlow clas-
sification rule sets for all the schemes. To make a fair com-
parison, all the implementations of TCAM [9], FSBV [21],
StrideBV [13], decision-tree on FPGA [10], and our approach
support 1 K rules.

We scale the TCAM performance to the state-of-the-art
technology based on a 18 Mbit TCAM running at 360 MHz
and consuming 15 W [9]; we ignore the power consumed by
the extra logic for managing the TCAM access. We linearly
scale up the memory consumption of FSBV (29 Bytes per

10. The energy saving is also remarkable as we scale up N.

208 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.27, NO.1,

104-bit rule) and StrideBV (156 Bytes per 104-bit rule) to esti-
mate the total power consumed for 1K 356-bit rules; the
power consumption for FPGA-based implementations is
evaluated using XPower Analyzer tool available in the
Xilinx ISE Design Suite 14.5 targeting Virtex 6 XC6VLX760
FFG1760-2 FPGA. The resource consumption of the deci-
sion-tree-based approach on FPGA [10] is also scaled to the
same Virtex 6 device (10,307 logic slices, 223 1/O pins, and
407 BRAM modules). For StrideBV, the most energy-effi-
cient design with s = 4 is considered. The energy consump-
tion of our approach is based on the design with s =4 and
n = 8, considering the worst-case “All-match” scenario as
discussed in Section 7.7.

Since our design runs at a higher clock rate than other
FPGA-based designs (FSBV, StrideBV, and decision-tree-
based approaches), to make a fair comparison, we also
show the throughputs of all the approaches for OpenFlow
packet classification in Fig. 16. The throughput performance
of TCAM is estimated based on the assumption that packets
can be classified within a single clock cycle. For the FSBV
and StrideBV approaches, we measure the throughput for
the single-pipeline implementation due to limited memory
resources on FPGA. We observe:

o All the FPGA-based approaches achieve at least 4x
energy efficiency than the TCAM solution.

e Compared to FSBV (33.8n]/packet), our approach
(15.9nJ/packet) consumes less energy to classify an
OpenFlow packet. The longest wire length is
reduced in our architecture, leading to a more
energy-efficient design on FPGA.

e Compared to the decision-tree-based approach on
FPGA (75.1nJ/packet), our approach achieves 5x
energy efficiency; our approach only uses LUT-
based distRAM, while the decision-tree-based
approach employs a large amount of BRAM and
distRAM at the same time. Note that the
throughput performance of decision-tree-based
approach depends on the rule set.

e Compared to StrideBV (12.7nJ/packet), our
approach consumes more energy (1.25x). Note the
PE in our architecture is self-reconfigurable and sup-
ports dynamic updates, which requires more resour-
ces and consumes more energy. Moreover, our
architecture allows us to classify packets at a very
high clock rate, which also results in more power
consumption than other approaches. However, with
slightly more energy, our approach achieves scalabil-
ity, sustains high throughput (2x) and supports fast
incremental update.

7.8.2 Throughput and Latency

We also compare the latency performance for various
approaches in Fig. 17. We assume the TCAM can classify
packets in a single clock cycle [9]. We assume seven pipeline
stage are employed in the FSBV-based approach, while the
clock rate can be sustained at 167 MHz [21]. For StrideBV
[13], the latency estimation is based on a single pipeline con-
sisting of [£] = 89 stages running at 105 MHz. We assume
the decision-tree-based implementation [10] employs a 16-
stage pipeline clocked at 125 MHz.

JANUARY 2016

1200 - 800

@ Latency B Throughput ;
900 | = =600 3
isoo o f % 400 g
§ 300 - % % = 200:%

Q$
S

Fig. 17. Comparing throughput and latency.

As can be seen, the TCAM has the lowest latency (sin-
gle-cycle classification). The StrideBV and our approach
introduce the highest latency due to the deeply pipelined
architecture. However, our approach eliminates long
wires and increases the clock rate; this in turn improves
the latency performance (703ns) compared to StrideBV
(839ns).

8 CONCLUSION

In this paper we presented a two-dimensional pipelined
architecture for packet classification. The advantages of the
proposed architecture include:

1) Parameterized. The architecture is highly parameter-
ized; it can be optimized with respect to various per-
formance metrics.

2) Rule-set-independent. The performance does not
depend on any rule set features other than the rule
set size.

3) High-throughput. All the PEs access their designated
distRAM modules independently. The memory
access is localized, resulting in shorter interconnec-
tions in each PE. This leads to high clock rate and
high throughput on FPGA.

4) Scalable with respect to rule set size. The longest wire
length is not significantly affected by the total num-
ber of rules; the architecture sustains high through-
put for a large number of rules, assuming we have
sufficient hardware resources.

5) Scalable with respect to input length. The throughput is
not adversely affected by the length of the packet
header. Our architecture achieves good performance
for both classic and OpenFlow packet classification.

6) Dynamically updatable. The dynamic update is
performed in a distributed manner on self-reconfig-
urable PEs; the update scheme has little impact on
the sustained performance.

7) Energy-efficient. The proposed architecture demon-
strates better energy efficiency. Compared to Stri-
deBV, our approach sustains 2x throughput and
supports fast dynamic updates with slightly more
energy consumption.

In the future, we plan to use this architecture vigorously
for other network applications including traffic classifica-
tion and heavy hitter detection for data center networks. We
will also explore more techniques to improve the energy
efficiency of this architecture.

QU AND PRASANNA: HIGH-PERFORMANCE AND DYNAMICALLY UPDATABLE PACKET CLASSIFICATION ENGINE ON FPGA 209

ACKNOWLEDGMENTS

This work is supported by the US National Science Founda-
tion (NSF) under grant No. CCF-1320211. Equipment grant
from Xilinx is gratefully acknowledged. Y. R. Qu is the
corresponding author.

REFERENCES

[1] OpenFlow Switch Specification V1.3.1. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-
v1.3.1.pdf, 2012.

[2] Y.R.Qu,S. Zhou, and V. K. Prasanna, “High-performance archi-
tecture for dynamically updatable packet classification on FPGA,”
in Proc. ACM/IEEE Symp. Arch. Netw. Commun. Syst., 2013,
pp- 125-136.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and]. Turner, “OpenFlow:
Enabling innovation in campus networks,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 2, pp. 69-74, 2008.

[4] P. Gupta and N. McKeown, “Algorithms for packet classi-
fication,” IEEE Netw., vol. 15, no. 2, pp. 24-32, Mar. 2001.

[5] P.Gupta and N. McKeown, “Dynamic algorithms with worst-case
performance for packet classification,” in Proc. Eur. Commission
Int. Conf., 2000, pp. 528-539.

[6] F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient multimatch
packet classification and lookup with TCAM,” IEEE Micro,
vol. 25, no. 1, pp. 50-59, Jan./Feb. 2005.

[7]1 K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary,
“Algorithms for advanced packet classification with ternary
CAMs,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 193—
204, 2005.

[8] B. Vamanan and T. N. Vijaykumar, “TreeCAM: Decoupling
updates and lookups in packet classification,” in Proc. Conf.
Emerging Netw. Exp. Technol., 2011, pp. 27:1-27:12.

[9] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-efficient

TCAMs for forwarding engines,” in Proc. Joint Conf. IEEE Comput.

Commun., vol. 1, 2003, pp. 42-52.

W. Jiang and V. K. Prasanna, “Scalable packet classification on

FPGA,” IEEE Trans. VLSI Syst., vol. 20, no. 9, pp. 1668-1680,

Sep. 2012.

J. Bispo, I. Sourdis, J. Cardoso, and S. Vassiliadis, “Regular expres-

sion matching for reconfigurable packet inspection,” in Proc. IEEE

Int. Conf. Field Programmable Technol., 2006, pp. 119-126.

Z. P. Ang, A. Kumar, and Y. Ha, “High speed video process-

ing using fine-grained processing on FPGA platform,” in Proc.

IEEE Int. Symp. Field-Programmable Custom Comput. Mach.,

2013, pp. 85-88.

T. Ganegedara and V. K. Prasanna, “StrideBV: Single chip 400g+

packet classification,” in Proc. IEEE Int. Conf. High Perform. Switch-

ing Routing, 2012, pp. 1-6.

I. Bonesana, M. Paolieri, and M. Santambrogio, “An adaptable

FPGA-based system for regular expression matching,” in Proc.

Des., Autom. Test Eur., 2008, pp. 1262-1267.

A. Sudarsanam, R. Barnes,]J. Carver, R. Kallam, and A. Dasu,

“Dynamically reconfigurable systolic array accelerators: A case

study with extended Kalman filter and discrete wavelet transform

algorithms,” Comput. Digit. Techn., IET, vol. 4, no. 2, pp. 126-142,

2010.

R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and

L. Sekanina, “Self-reconfigurable evolvable hardware system for

adaptive image processing,” IEEE Trans. Comput., vol. 62, no. §,

pp. 1481-1493, Aug. 2013.

L. Frigerio, K. Marks, and A. Krikelis, “Timed coloured petri nets

for performance evaluation of DSP applications: The 3GPP LTE

case study,” in Proc. VLSI-SoC: Des. Methodol. SoC and SiP, 2010,

vol. 313, pp. 114-132.

P. Gupta and N. McKeown, “Classifying packets with hierarchical

intelligent cuttings,” IEEE Micro, vol. 20, no. 1, pp. 3441, Jan./

Feb. 2000.

Y. R. Qu, S. Zhou, and V. Prasanna, “Scalable many-field packet

classification on multi-core processors,” in Proc. Int. Symp. Com-

put. Archit. High Perform. Comput., 2013, pp. 33—-40.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20] V. Pus and]. Korenek, “Fast and scalable packet classification
using perfect hash functions,” in Proc. ACM/SIGDA Int. Symp.
Field Programmable Gate Arrays, 2009, pp. 229-236.

W. Jiang and V. K. Prasanna, “Field-split parallel architecture for
high performance multi-match packet classification using
FPGAs,” in Proc. Annu. Symp. Parallelism Algss. and Archit., 2009,
pp. 188-196.

Virtex-6 FPGA Family. [Online]. Available: http://www.xilinx.
com/products/virtex6, 2012.

Y.-H. E. Yang and V. K. Prasanna, “High throughput and large
capacity pipelined dynamic search tree on FPGA,” in Proc. 18th
ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 2010,
pp- 83-92.

A. Kennedy, X. Wang, and B. Liu, “Energy efficient packet classifi-
cation hardware accelerator,” in Proc. IEEE Int. Symp. Parallel Dis-
trib. Process., 2008, pp. 1-8.

[21]

[22]

[23]

[24]

Yun R. Qu received the BS degree in electrical
engineering from Shanghai Jiao Tong University,
and the MS degree in electrical engineering at
the University of Southern California, in 2009 and
2011, respectively. He is currently working
towards the PhD degree in computer engineering
at the University of Southern California. His
research interests include large-scale regular
expression matching, IP address lookup, multi/
many-field packet classifier, and online traffic
classification engine for network routers. He has
also done research in error correcting codes and communication theory.
His primary focuses are on algorithm design, algorithm mapping onto
custom hardware, high-performance and power-efficient architectures.
He is a member of the IEEE.

Viktor K. Prasanna received the BS degree in
electronics engineering from the Bangalore Uni-
versity, the MS degree from the School of Auto-
mation, Indian Institute of Science, and the PhD
degree in computer science from the Pennsylva-
nia State University. He is a Charles Lee Powell
chair in engineering in the Ming Hsieh Depart-
ment of Electrical Engineering and a professor of
computer science at the University of Southern
California (USC). His research interests include
high-performance computing, parallel and distrib-
uted systems, reconfigurable computing, and embedded systems. He is
the executive director of the USC-Infosys Center for Advanced Software
Technologies (CAST) and is an associate director of the USCChevron
Center of Excellence for Research and Academic Training on Interactive
Smart QOilfield Technologies (Cisoft). He also serves as the director of
the Center for Energy Informatics at USC. He served as the editor-in-
chief of the IEEE Transactions on Computers during 2003-06. Currently,
he is the editor-in-chief of the Journal of Parallel and Distributed Comput-
ing. He was the founding chair of the IEEE Computer Society Technical
Committee on Parallel Processing. He is the steering co-chair of the
IEEE International Parallel and Distributed Processing Symposium
(IPDPS) and is the steering chair of the IEEE International Conference
on High Performance Computing (HiPC). He is the recipient of the 2009
Outstanding Engineering Alumnus Award from the Pennsylvania State
University. He is a fellow of the IEEE, the ACM and the American Associ-
ation for Advancement of Science (AAAS).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

